

Departmental Annual Report - 3

Departmental Activities: Curriculum and Beyond

Department: Chemistry

Academic Year: 2023-24

Part A.2

Students undertaking project work/field work/internship (beyond the requirements of coursework)

A.2.1

Following students of B.Sc. (Hons) Chemistry participated in the 6-weeks long DSKC Summer Workshop 2023, held from 06 June to 17 July 2023 and successfully completed their projects.

S.No.	Student	Semester	Project Title
	Himanshi		
1	Sharma	VI	Protein ligand binding interaction
2	Abhilasha	VI	Protein ligand binding interaction
3	Rashi	VI	Adsorption studies using modified natural product
4	Isha Kapoor	VI	Adsorption studies using modified natural product
	Anjali		
5	Sharma	VI	Green Methods of Reduction of Quinones
6	Khyati Kinger	VI	Green Methods of Reduction of Quinones
7	Anagha K T	VI	Green Methods of Reduction of Quinones
	Aleena Anto		
8	ΚA	VI	Green Methods of Reduction of Quinones
9	Karthika V	VI	Protein ligand binding interaction
10	Jyoti	VI	The Chemistry of Colour: Natural Dyes and Its Applications
			Synthesis, Properties and Applications of Alkaline Earth Metal
11	Sneha	VI	Titanate Perovskite Nanoparticles
	Fidha Lamiya		
12	Hussain	VI	Protein ligand binding interaction

			Synthesis, Properties and Applications of Alkaline Earth Metal
13	Jyoti	VI	Titanate Perovskite Nanoparticles
	Amala		
14	Abraham	VI	The Chemistry of Colour: Natural Dyes and Its Applications
15	Anumol P	VI	A Brief Overview of Azadirachta indica (Neem): The Miracle Herb
16	Nisha	VI	A Brief Overview of Azadirachta indica (Neem): The Miracle Herb
17	Gargi	VI	The Chemistry of Fats and Oils
18	Deepti Bishnoi	VI	The Chemistry of Fats and Oils
19	Devika K S	VI	The Chemistry of Fats and Oils
20	Diksha	VI	The Chemistry of Colour: Natural Dyes and Its Applications
21	Ameera M H	VI	A Brief Overview of Azadirachta indica (Neem): The Miracle Herb
22	Kusum Singh	VI	Designing of kinase inhibitors as anti cancer drugs using computational chemistry
23	Ujwala Udayakumar	VI	Designing of kinase inhibitors as anti cancer drugs using computational chemistry
24	Nandana P	VI	Medicinal properties of Agwain(thymol) against menstrual cycle using computational chemistry
25	Muskan Goyal	VI	Medicinal properties of Agwain(thymol) against menstrual cycle using computational chemistry
26	Manjeet	VI	Computational Chemistry
27	Harshita	VI	Green Methods of Reduction of Quinones
28	Skarma Tsultim Palmo	VI	Green Methods of Reduction of Quinones
29	Garima Singh	VI	Designing of kinase inhibitors as anti cancer drugs using computational chemistry
30	Nikhita Sharma	VI	Adsorption studies using modified natural product

			Cardioprotective Potential of Arjunolic Acid: Insights from
31	Shruti Rana	VI	Molecular Docking Studies with M2 Receptor
32	Urfi Aaliya	VI	Green Synthesis of metal oxide Nanoparticles.
33	Himanshi	VI	Cardioprotective Potential of Arjunolic Acid: Insights from Molecular Docking Studies with M2 Receptor
34	Stuti Gupta	VI	Phytomedicines for cancer therapy: The chronicle of eternal sequel
35	Anjitha P Satheesh	VI	Phytomedicines for cancer therapy: The chronicle of eternal sequel
36	Navyatha Jenu J	VI	Phytomedicines for cancer therapy: The chronicle of eternal sequel
37	Nandana Nambiar	VI	Synthesis of sulfonamide based heterocyclic compounds efficacious against SARS-CoV-2
38	Vedhika Salgotra	VI	Development of morpholine based heterocyclic compounds effective against Malaria
39	Abhay Pant	VI	Development of morpholine based heterocyclic compounds effective against Malaria
40	Gopika Ck	VI	Synthesis of Nanoparticles by green method and their application
41	Aastha Bhasin	VI	Medicinal properties of Agwain(thymol) against menstrual cycle using computational chemistry
42	Saja KT	VI	Green Synthesis of metal oxide Nanoparticles.
43	Shivani	VI	The Chemistry of Colour: Natural Dyes and Its Applications
44	Sneha Elizabeth	VI	Synthesis of Nanoparticles by green method and their application
45	Kanchan Kanwar	VI	UV-spectroscopic and volumetric determination of total Vitamin C content in various fruits and juices consumed in North Delhi.
46	Nandana Narayanan	VI	UV-spectroscopic and volumetric determination of total Vitamin C content in various fruits and juices consumed in North Delhi.
47	Prachi	VI	UV-spectroscopic and volumetric determination of total Vitamin C content in various fruits and juices consumed in North Delhi.

	Vishakha		Comparative overview of techniques for degradation of
48	Rani	VI	pharmaceuticals in wastewater
49	Niharika Lohare	VI	Comparative overview of techniques for degradation of pharmaceuticals in wastewater
50	Nitika Thakur	vi	Comparative overview of techniques for degradation of pharmaceuticals in wastewater
51	Shubhangi Maheshwari	vi	Comparative overview of techniques for degradation of pharmaceuticals in wastewater
52	Anushka Gupta	VI	Synthesis of Metal Oxide Nanoparticles by green method
53	Mehak Das	VI	Synthesis and applications of nanocomposites from flower waste
54	Rajat Chauhan	VI	Synthesis and applications of nanocomposites from flower waste
55	Reetik Chib	VI	Synthesis and applications of nanocomposites from flower waste
56	Anjali Chauhan	VI	Synthesis and applications of nanocomposites from flower waste
57	Priya	VI	Synthesis and applications of nanocomposites from flower waste
58	Aayushi Jain	VI	Synthesis and applications of nanocomposites from flower waste
59	Chitra Shankar	VI	Green Synthesis of metal oxide Nanoparticles.
60	Kunali Gautam	VI	Green Synthesis of metal oxide Nanoparticles.
61	Ansab Javaid	VI	Photocatalytic Application of metal Oxide semiconductors for environment remediation
62	Bipasha	VI	Photocatalytic Application of metal Oxide semiconductors for environment remediation
63	Рооја	VI	Photocatalytic Application of metal Oxide semiconductors for environment remediation
64	Sakshi	VI	Photocatalytic Application of metal Oxide semiconductors for environment remediation

65	Diksha	VI	 Photocatalytic Application of metal Oxide semiconductors for environment remediation
66	Rahba Haleema	VI	Photocatalytic Application of metal Oxide semiconductors for environment remediation
67	Stuti	vi	Photocatalytic Application of metal Oxide semiconductors for environment remediation
68	Gunjan	VI	Photocatalytic Application of metal Oxide semiconductors for environment remediation
69	Chetan Rathi	vi	Synthesis of Metal Oxide Nanoparticles & Nanocomposite by Green Method using Various Plant Extracts
70	Esha Deswal	VI	Synthesis of Metal Oxide Nanoparticles & Nanocomposite by Green Method using Various Plant Extracts
71	Rishabh Singh	vi	Synthesis of Metal Oxide Nanoparticles & Nanocomposite by Green Method using Various Plant Extracts
72	Nikita Saharan	VI	Paper Production using Pineapple Leaves and its Applications
73	Sonam	VI	Paper Production using Pineapple Leaves and its Applications
74	Shinjinee Bhattachary ya	VI	Biological Significance of Carotenoids and Oils derived from Indian Cultivars: A Comparative Analysis
75	Trishna Sorout	VI	Biological Significance of Carotenoids and Oils derived from Indian Cultivars: A Comparative Analysis
76	Sneha Frijo	VI	Biological Significance of Carotenoids and Oils derived from Indian Cultivars: A Comparative Analysis
77	Sneha Mahindran	VI	Biological Significance of Carotenoids and Oils derived from Indian Cultivars: A Comparative Analysis
78	Raksha Upadhyay	VI	Synthesis of Metal containing Mustard Oil based Polymers and its Application as Coatings
79	Saloni Gupta	VI	Synthesis of Metal containing Mustard Oil based Polymers and its Application as Coatings

			Synthesis of Metal containing Mustard Oil based Polymers
80	Mehak	VI	and its Application as Coatings
	Ardra		Synthesis of Metal containing Mustard Oil based Polymers
81	Ganesan	VI	and its Application as Coatings
			Preparation of Bioactive Metal containing Oil based
82	Bhagyashri	VI	Polymers and its Application in Water Remediation
	Hadiya		Preparation of Bioactive Metal containing Oil based
83	Tahir	VI	Polymers and its Application in Water Remediation
			Preparation of Bioactive Metal containing Oil based
84	Devika PS	VI	Polymers and its Application in Water Remediation
	Swetha		Preparation of Bioactive Metal containing Oil based
85	Gopan	VI	Polymers and its Application in Water Remediation
	Malavika		Preparation of Bioactive Metal containing Oil based
86	AM	VI	polymers and its Application in Water Remediation
			Air Quality during Dust Storms and Transport of Air
87	Sonam	VI	Pollutants in Delhi
	Tejika		Air Quality during Dust Storms and Transport of Air
88	Choudhary	VI	Pollutants in Delhi
	Sanju		Air Quality during Dust Storms and Transport of Air
89	Yadav	VI	Pollutants in Delhi
			Air Quality during Dust Storms and Transport of Air
90	Ritu	VI	Pollutants in Delhi
	Twinkle		Air Quality during Dust Storms and Transport of Air
91	Rani	VI	Pollutants in Delhi
	Diksha		
92	Sharma	VI	The Chemistry of Fats and Oils